[1] PAWLAK Z. Rough Sets. International Journal of Computer and Information Sciences, 1982, 11(5): 341-356.
[2] WEI W, LIANG J Y.Information Fusion in Rough Set Theory: An Overview. Information Fusion, 2019, 48: 107-118.
[3] 杨洁,王国胤,张清华,等.多粒度云模型的相似性度量.模式识别与人工智能, 2018, 31(8): 677-692.
(YANG J, WANG G Y, ZHANG Q H, et al. Similarity Measure of Multi-granularity Cloud Model. Pattern Recognition and Artificial Intelligence, 2018, 31(8): 677-692.)
[4] 邓大勇,姚坤,肖春水.全粒度粗糙集的不确定性.模式识别与人工智能, 2018, 31(9): 809-815.
(DENG D Y, YAO K, XIAO C S.Uncertainty of Entire-Granulation Rough Sets. Pattern Recognition and Artificial Intelligence, 2018, 31(9): 809-815.)
[5] 王佳琪,苗夺谦,张红云.基于可变多粒度概率粗糙集的分类模型.模式识别与人工智能, 2017, 30(8): 710-717.
(WANG J Q, MIAO D Q, ZHANG H Y.Classification Model Based on Variable Multi-granulation Probabilistic Rough Set. Pattern Recognition and Artificial Intelligence, 2017, 30(8): 710-717.)
[6] AGGARWAL M.Rough Information Set and Its Applications in Decision Making. IEEE Transactions on Fuzzy Systems, 2017, 25(2): 265-276.
[7] DONG H B, LI T, DING R, et al. A Novel Hybrid Genetic Algorithm with Granular Information for Feature Selection and Optimization. Applied Soft Computing, 2018, 65: 33-36.
[8] SHE Y H, HE X L, SHI H X, et al. A Multiple-Valued Logic Approach for Multigranulation Rough Set Model. International Journal of Approximate Reasoning, 2017, 82: 270-284.
[9] YAO Y Y, ZHANG X Y. Class-Specific Attribute Reducts in Rough Set Theory. Information Sciences, 2017, 418/419: 601-618.
[10] 梁美社,米据生,侯成军,等.基于局部广义多粒度粗糙集的多标记最优粒度选择.模式识别与人工智能, 2019, 32(8): 718-725.
(LIANG M S, MI J S, HOU C J, et al. Optimal Granulation Selection for Multi-label Data Based on Local Generalized Multi-granulation Rough Set. Pattern Recognition and Artificial Intelligence, 2019, 32(8): 718-725.)
[11] BAI H X, LI D Y, GE Y, et al. Spatial Rough Set-Based Geographical Detectors for Nominal Target Variables. Information Sciences, 2022, 586: 525-539.
[12] 陈玉洪,张清华,杨洁.基于区间阴影集的密度峰值聚类算法.模式识别与人工智能, 2019, 32(6): 531-544.
(CHEN Y H, ZHANG Q H, YANG J.Density Peak Clustering Algorithm Based on Interval Shadowed Sets. Pattern Recognition and Artificial Intelligence, 2019, 32(6): 531-544.)
[13] WU C Y, ZHANG Q H, CHENG Y L, et al. Novel Three-Way Generative Classifier with Weighted Scoring Distribution. Information Sciences, 2021, 579: 732-750.
[14] ZHANG Q H, CHENG Y L, ZHAO F, et al. Optimal Scale Combination Selection Integrating Three-Way Decision with Hasse Diagram. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3675-3689.
[15] ZHANG Q H, YANG C C, WANG G Y.A Sequential Three-Way Decision Model with Intuitionistic Fuzzy Numbers. IEEE Tran-sactions on Systems, Man, and Cybernetics(Systems), 2021, 51(5): 2640-2652.
[16] HU Q H, YU D R, LIU J F, et al. Neighborhood Rough Set Based Heterogeneous Feature Subset Selection. Information Sciences, 2008, 178(18): 3577-3594.
[17] DAI J H, HU Q H, HU H, et al. Neighbor Inconsistent Pair Selection for Attribute Reduction by Rough Set Approach. IEEE Transactions on Fuzzy Systems, 2018, 26(2): 937-950.
[18] LIU K Y, YANG X B, FUJITA H, et al. An Efficient Selector for Multi-granularity Attribute Reduction. Information Sciences, 2019, 505: 457-472.
[19] YANG J L, YAO Y Y.A Three-Way Decision Based Construction of Shadowed Sets from Atanassov Intuitionistic Fuzzy Sets. Information Sciences, 2021, 577: 1-21.
[20] HU Q H, ZHANG L J, ZHOU Y C, et al. Large-Scale Multimodality Attribute Reduction with Multi-kernel Fuzzy Rough Sets. IEEE Transactions on Fuzzy Systems, 2018, 26(1): 226-238.
[21] ZHANG Q H, ZHANG P, WANG G Y.Research on Approximation Set of Rough Set Based on Fuzzy Similarity. Journal of Intelligent and Fuzzy Systems, 2017, 32(3): 2549-2562.
[22] ZHANG Q H, AI Z H, ZHANG J Z, et al. A Novel Fast Constructing Neighborhood Covering Algorithm for Efficient Classification. Knowledge-Based Systems, 2021, 225. DOI: 10.1016/j.knosys.2021.107104.
[23] 孙林,黄金旭,徐久成,等.基于自适应鲸鱼优化算法和容错邻域粗糙集的特征选择算法.模式识别与人工智能, 2022, 35(2): 150-165.
(SUN L, HUANG J X, XU J C, et al. Feature Selection Based on Adaptive Whale Optimization Algorithm and Fault-Tolerance Neighborhood Rough Sets. Pattern Recognition and Artificial Intelligence, 2022, 35(2): 150-165.)
[24] 胡清华,于达仁,谢宗霞.基于邻域粒化和粗糙逼近的数值属性约简.软件学报, 2008, 19(3): 640-649.
(HU Q H, YU D R, XIE Z X.Numerical Attribute Reduction Based on Neighborhood Granulation and Rough Approximation. Journal of Software, 2008, 19(3): 640-649.)
[25] 胡清华,赵辉,于达仁.基于邻域粗糙集的符号与数值属性快速约简算法.模式识别与人工智能, 2008, 21(6): 732-738.
(HU Q H, ZHAO H, YU D R.Efficient Symbolic and Numerical Attribute Reduction with Neighborhood Rough Sets. Pattern Recognition and Artificial Intelligence, 2008, 21(6): 732-738.)
[26] 徐波,张贤勇,冯山.邻域粗糙集的加权依赖度及其启发式约简算法.模式识别与人工智能, 2018, 31(3): 256-264.
(XU B, ZHANG X Y, FENG S.Weighted Dependence of Neighborhood Rough Sets and Its Heuristic Reduction Algorithm. Pattern Recognition and Artificial Intelligence, 2018, 31(3): 256-264.)
[27] WANG C Z, HUANG Y, SHAO M W, et al. Feature Selection Based on Neighborhood Self-Information. IEEE Transactions on Cybernetics, 2020, 50(9): 4031-4042.
[28] 夏鸿斌,陆炜,刘渊.基于异构邻域聚合的协同过滤推荐算法.模式识别与人工智能, 2021, 34(8): 712-722.
(XIA H B, LU W, LIU Y.Collaborative Filtering with Heterogeneous Neighborhood Aggregation. Pattern Recognition and Artificial Intelligence, 2021, 34(8): 712-722.)
[29] YUE X D, CHEN Y F, MIAO D Q, et al. Fuzzy Neighborhood Covering for Three-Way Classification. Information Sciences, 2020, 507: 795-808.
[30] 薛占熬,司小朦,袁艺林,等.多粒度邻域粗糙直觉模糊集模型.模式识别与人工智能, 2017, 30(1): 11-20.
(XUE Z A, SI X M, YUAN Y L, et al. Model of Multi-granulation Neighborhood Rough Intuitionistic Fuzzy Sets. Pattern Recognition and Artificial Intelligence, 2017, 30(1): 11-20.)
[31] WANG C Z, HU Q H, WANG X Z, et al. Feature Selection Based on Neighborhood Discrimination Index. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(7): 2986-2999.
[32] 白盛兴,林耀进,王晨曦,等.基于邻域粗糙集的大规模层次分类在线流特征选择.模式识别与人工智能, 2019, 32(9): 811-820.
(BAI S X, LIN Y J, WANG C X, et al. Large-Scale Hierarchical Classification Online Streaming Feature Selection Based on Neighborhood Rough Set. Pattern Recognition and Artificial Intelligence, 2019, 32(9): 811-820.)
[33] HU Q H, YU D R, XIE Z X. Neighborhood Classifiers. Expert Systems with Applications, 2008, 34(2): 866-876.
[34] 徐苏平,杨习贝,于化龙,等.一种基于邻域协同表达的分类方法.计算机科学, 2017, 44(9): 234-238.
(XU S P, YANG X B, YU H L, et al. Neighborhood Collaborative Representation Based Classification Method. Computer Science, 2017, 44(9): 234-238.)
[35] 亓慧,杨习贝,史颖.一种扩充粒化的序列邻域分类方法.山西大学学报(自然科学版), 2020, 43(4): 885-889.
(QI H, YANG X B, SHI Y.An Expanded Granulation Based Sequential Neighborhood Classification Method. Journal of Shanxi University(Natural Science Edition), 2020, 43(4): 885-889.)
[36] RAO X S, SONG J J, YANG X B, et al. Neighborhood Classifier for Label Noise // Proc of the International Conference on Machine Learning and Cybernetics. Washington, USA: IEEE, 2019. DOI: 10.1109/ICMLC48188.2019.8949200.
[37] KUMAR S U, INBARANI H H.A Novel Neighborhood Rough Set Based Classification Approach for Medical Diagnosis. Procedia Computer Science, 2015, 47: 351-359.
[38] WANG Y D, PAN Z B, PAN Y W.A Training Data Set Cleaning Method by Classification Ability Ranking for the k-Nearest Neighbor Classifier. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(5): 1544-1556.
[39] KIM K.Normalized Class Coherence Change-Based kNN for Cla-ssification of Imbalanced Data. Pattern Recognition, 2021, 120. DOI: 10.1016/j.patcog.2021.108126.
[40] XIAO J Y, ZHANG Q H, AI Z H, et al. A Fast Neighborhood Classifier Based on Hash Bucket with Application to Medical Diagnosis. International Journal of Approximate Reasoning, 2022, 148: 177-132.
[41] WILSON D R, MARTINEZ T R.Improved Heterogeneous Distance Functions. Journal of Artificial Intelligence Research, 1997, 6: 1-34. |